Tag: Transfer Learning
All the articles with the tag "Transfer Learning".
-
Rethinking Meta-Learning from a Learning Lens
This paper rethinks meta-learning from a 'learning' lens, proposing TRLearner, a plug-and-play method that leverages task relations to calibrate optimization, demonstrating significant performance improvements across regression, classification, drug activity, pose prediction, and OOD generalization tasks.
-
MMRL++: Parameter-Efficient and Interaction-Aware Representation Learning for Vision-Language Models
本文提出MMRL及MMRL++框架,通过共享表示空间和解耦策略增强视觉-语言模型的少样本适配能力,并利用参数高效的SRRA和PRC机制提升泛化性和训练稳定性,在多个数据集上取得最优性能。
-
Extracting and Transferring Abilities For Building Multi-lingual Ability-enhanced Large Language Models
本文提出MAET方法,通过提取语言无关的能力相关权重并跨语言转移,构建多语言能力增强的大型语言模型,在数学和科学任务上以60%的计算资源实现约10%的性能提升,优于多种基线方法。
-
HYPEROFA: Expanding LLM Vocabulary to New Languages via Hypernetwork-Based Embedding Initialization
本文提出基于超网络的HYPEROFA方法,用于初始化新语言令牌嵌入,提高PLM对低资源语言的适应性,性能优于随机初始化并与OFA方法持平或更好。