Tag: Transfer Learning
All the articles with the tag "Transfer Learning".
-
Scalable Fine-tuning from Multiple Data Sources: A First-Order Approximation Approach
本文提出GRADEX算法,通过一阶近似快速估计语言模型微调损失,实现子集选择的30倍以上加速,并在指令微调和思维链微调任务中比基线方法提升高达3.8%的性能。
-
Layer Swapping for Zero-Shot Cross-Lingual Transfer in Large Language Models
本文提出了一种层交换方法,通过将语言专家模型的顶部和底部层与数学专家模型的中间层重组,实现零样本跨语言迁移,在低资源语言的数学推理任务上显著提升性能达10%。
-
Graceful Forgetting in Generative Language Models
本文提出Learning With Forgetting (LWF)框架,通过自生成知识、Fisher信息矩阵加权的遗忘置信度计算和周期性遗忘策略,在生成式语言模型的微调中实现优雅遗忘,实验表明其在大多数领域特定问答任务上显著提升性能。
-
Gameplay Highlights Generation
This paper presents a method to generate gameplay highlight reels by finetuning the X-CLIP multimodal model on an in-house FPS game dataset, achieving over 90% event detection accuracy and demonstrating transfer learning, while optimizing deployment through quantization.
-
Cross-Lingual Optimization for Language Transfer in Large Language Models
本文提出跨语言优化(CLO)方法,通过翻译数据和改进的DPO策略,将英语中心的大型语言模型有效转移到目标语言,在保持英语能力的同时显著提升目标语言性能,尤其在低资源语言中以更少数据取得优于传统SFT的结果。