Posts
All the articles I've posted.
-
Adversarial Attacks in Multimodal Systems: A Practitioner's Survey
This survey paper provides a comprehensive overview of adversarial attacks on multimodal AI systems across text, image, video, and audio modalities, categorizing threats by attacker knowledge, intention, and execution to equip practitioners with knowledge of vulnerabilities and cross-modal risks.
-
Detecting and Mitigating Hateful Content in Multimodal Memes with Vision-Language Models
本文提出了一种基于视觉-语言模型的定义引导提示技术和UnHateMeme框架,用于检测和缓解多模态模因中的仇恨内容,通过零样本和少样本提示实现高效检测,并生成非仇恨替代内容以保持图像-文本一致性,在实验中展现出显著效果。
-
Towards Safer Pretraining: Analyzing and Filtering Harmful Content in Webscale datasets for Responsible LLMs
This paper proposes a three-dimensional taxonomy and develops TTP and HarmFormer tools to filter harmful content from web-scale LLM pretraining datasets, revealing significant toxicity prevalence and persistent safety gaps through benchmarks like HAVOC.
-
Style Feature Extraction Using Contrastive Conditioned Variational Autoencoders with Mutual Information Constraints
This paper proposes a novel method combining contrastive learning with conditional variational autoencoders and mutual information constraints to extract style features from unlabeled data, demonstrating effectiveness on simple datasets like MNIST while facing challenges with natural image datasets due to augmentation limitations and qualitative evaluation.
-
CB-cPIR: Code-Based Computational Private Information Retrieval
CB-cPIR introduces a code-based single-server computational private information retrieval scheme that enhances security against subquery attacks by using high-weight secret vectors and dual queries, achieving lower communication and computational costs compared to lattice-based schemes like XPIR and SimplePIR.