Tag: Reinforcement Learning
All the articles with the tag "Reinforcement Learning".
-
MiMo: Unlocking the Reasoning Potential of Language Model -- From Pretraining to Posttraining
This paper introduces MiMo-7B, a 7B-parameter LLM optimized for reasoning through innovative pre-training with reasoning-dense data and multi-token prediction, and post-training with RL using test-difficulty-driven rewards, achieving superior performance over larger models and OpenAI o1-mini on mathematics and coding benchmarks.
-
Behavior Injection: Preparing Language Models for Reinforcement Learning
本文提出BRIDGE方法,通过在SFT阶段注入探索和利用行为增强大型语言模型的RL准备度,并在数学与逻辑推理任务上显著提升RFT性能。
-
SimpleRL-Zoo: Investigating and Taming Zero Reinforcement Learning for Open Base Models in the Wild
This paper investigates zero RL training on diverse open base models, achieving significant accuracy and response length improvements while identifying key factors like reward design and data difficulty that influence the emergence of reasoning behaviors.
-
Exploring the Potential of Offline RL for Reasoning in LLMs: A Preliminary Study
本文通过探索离线强化学习方法(LD-DPO),在DeepDistill-32B模型上实现了平均3.3%的推理性能提升,尤其在Arena-Hard基准上提升10.1%,并强调了推理长度与语义丰富性平衡的重要性。
-
Advancing Multimodal Reasoning via Reinforcement Learning with Cold Start
本文通过质疑‘aha moment’模式与推理能力提升的相关性,提出了一种结合监督微调(SFT)和强化学习(RL)的两阶段方法,在3B和7B规模的多模态大语言模型上显著提升了多模态推理性能,达到开源模型中的最优水平。