Tag: Reinforcement Learning
All the articles with the tag "Reinforcement Learning".
-
Reinforcement Learning Outperforms Supervised Fine-Tuning: A Case Study on Audio Question Answering
本文通过将GRPO算法应用于Qwen2-Audio-7B-Instruct模型,在音频问答任务中取得了64.5%的最佳准确率,证明强化学习在小规模数据集上优于监督微调,但显式推理过程未显著提升性能,且与人类水平仍有差距。
-
Beyond 'Aha!': Toward Systematic Meta-Abilities Alignment in Large Reasoning Models
This paper introduces a systematic approach to enhance large reasoning models by aligning them with deduction, induction, and abduction meta-abilities through a three-stage pipeline of individual training, parameter merging, and domain-specific RL, achieving up to 4% performance gains over instruction-tuned baselines across math, coding, and science benchmarks.
-
Can Large Reasoning Models Self-Train?
本文提出Self-Rewarded Training (SRT) 方法,通过模型自一致性驱动强化学习实现无监督数学推理能力提升,初期性能媲美有监督方法,但因奖励黑客问题导致长期训练性能崩溃,并探索了提前停止和课程学习等缓解策略。
-
Hybrid Latent Reasoning via Reinforcement Learning
本文提出HRPO,一种基于强化学习的混合潜在推理框架,通过门控机制结合离散token和连续隐状态,显著提升了大型语言模型在知识和推理任务上的性能,同时减少了对链式思维数据的依赖。
-
Walk Before You Run! Concise LLM Reasoning via Reinforcement Learning
本文提出 ConciseR,一种两阶段强化学习框架,通过 GRPO++ 提升推理能力并通过 L-GRPO 优化响应长度,在保持准确性的同时显著减少 CoT 响应长度,优于多个基准数据集上的现有方法。