Tag: Reasoning
All the articles with the tag "Reasoning".
-
SEAL: Steerable Reasoning Calibration of Large Language Models for Free
SEAL, a training-free method, calibrates the reasoning process of Large Language Models by steering latent representations to reduce redundant thoughts, achieving up to 14.1% accuracy improvement and 50.4% token reduction across diverse benchmarks.
-
AM-Thinking-v1: Advancing the Frontier of Reasoning at 32B Scale
AM-Thinking-v1 是一个32B参数的密集语言模型,通过精心设计的监督微调和强化学习后训练框架,在数学推理和代码生成任务上实现了与大型MoE模型媲美的性能,展示了中型规模模型在推理能力与部署效率之间的平衡潜力。
-
Scaling Reasoning can Improve Factuality in Large Language Models
本文通过从先进模型中提取并用知识图谱增强推理轨迹,微调Qwen2.5系列模型,并在复杂开放域问答任务中验证了测试时计算扩展(并行采样和预算强制)可提升事实准确性2-8%,尤其对小型模型效果显著。
-
Pre-Act: Multi-Step Planning and Reasoning Improves Acting in LLM Agents
本文提出Pre-Act方法,通过多步骤规划和详细推理提升LLM代理性能,并通过微调小型模型(如Llama 3.1 70B)在Almita数据集上实现比GPT-4高69.5%的行动准确率和28%的目标完成率。
-
CoThink: Token-Efficient Reasoning via Instruct Models Guiding Reasoning Models
CoThink 提出了一种双阶段推理框架,通过指令模型生成解决方案大纲指导推理模型完成解答,在保持准确率的同时平均减少 22.3% 的令牌生成量,提升了大型语言模型的推理效率。