Tag: Pre-training
All the articles with the tag "Pre-training".
-
Mixture of Sparse Attention: Content-Based Learnable Sparse Attention via Expert-Choice Routing
本文提出Mixture of Sparse Attention (MoSA)方法,通过专家选择路由实现基于内容的稀疏注意力,显著提高了Transformer模型在相同计算预算下的语言建模性能,并优化了资源使用。
-
Small or Large? Zero-Shot or Finetuned? Guiding Language Model Choice for Specialized Applications in Healthcare
本文通过实证实验指导在医疗专业应用中语言模型的选择,强调微调小语言模型和领域特定预训练的显著优势,使其在特定任务上超越零-shot 大语言模型。
-
X-Fusion: Introducing New Modality to Frozen Large Language Models
本文提出X-Fusion框架,通過凍結LLM參數並添加雙塔結構,高效實現多模態理解和生成,同時保留原始語言能力。
-
Less is More: Towards Green Code Large Language Models via Unified Structural Pruning
本文提出Flab-Pruner,一种结合词汇、层和FFN剪枝的统一结构剪枝方法,通过KL散度优化和自定义微调策略,在减少代码LLM参数的同时保持高性能和效率。
-
Unveiling Language-Specific Features in Large Language Models via Sparse Autoencoders
This paper uses Sparse Autoencoders to identify and manipulate language-specific features in Large Language Models, introducing a monolinguality metric, demonstrating context dependency via code-switching, and enhancing steering vectors for better control over multilingual generation while revealing significant language-specific impacts through ablation studies.