Tag: Pre-training
All the articles with the tag "Pre-training".
-
Contrastive Learning for Task-Independent SpeechLLM-Pretraining
本文提出了一种基于对比学习的SpeechLLM任务无关预训练方法,通过对齐语音和文本表示,在低资源场景下显著提升了ASR、语音翻译和语音问答任务的性能,并超越了多个专门模型。
-
Less, but Better: Efficient Multilingual Expansion for LLMs via Layer-wise Mixture-of-Experts
本文提出LayerMoE算法,通过基于层间语言相似性的专家分配和路由分类器,实现了多语言LLM的高效扩展,以更少的参数显著提升新语言性能并减少旧语言遗忘。
-
General-Reasoner: Advancing LLM Reasoning Across All Domains
本文提出General-Reasoner,通过零强化学习结合跨领域高质量数据集和基于生成模型的验证器,显著提升大型语言模型在多领域推理任务上的性能,同时保持数学推理的有效性。
-
P$^2$ Law: Scaling Law for Post-Training After Model Pruning
本文提出P² Law作为剪枝后大型语言模型后训练的首个缩放定律,通过结合模型规模、后训练数据量、剪枝率和初始损失预测后训练损失,并在多种剪枝方法和模型上验证其有效性和部分泛化能力。
-
Longer Context, Deeper Thinking: Uncovering the Role of Long-Context Ability in Reasoning
本文通过实验验证了长上下文能力与推理性能的正相关,提出在监督微调前增强长上下文能力的训练策略,并在数学推理基准上显著提升了模型性能。