Tag: Pre-training
All the articles with the tag "Pre-training".
-
Mixture of Sparse Attention: Content-Based Learnable Sparse Attention via Expert-Choice Routing
本文提出Mixture of Sparse Attention (MoSA)方法,通过专家选择路由实现基于内容的稀疏注意力,显著提高了Transformer模型在相同计算预算下的语言建模性能,并优化了资源使用。
-
Contextures: Representations from Contexts
This paper introduces the contexture theory, unifying representation learning across paradigms by targeting top singular functions of a context-induced expectation operator, demonstrating high alignment in neural representations and proposing a task-agnostic metric for context evaluation with strong empirical correlation to performance on various datasets.
-
Extracting and Transferring Abilities For Building Multi-lingual Ability-enhanced Large Language Models
本文提出MAET方法,通过提取语言无关的能力相关权重并跨语言转移,构建多语言能力增强的大型语言模型,在数学和科学任务上以60%的计算资源实现约10%的性能提升,优于多种基线方法。
-
LZ Penalty: An information-theoretic repetition penalty for autoregressive language models
本文提出LZ惩罚方法,基于LZ77压缩算法的码长变化动态调整自回归语言模型的采样分布,在贪婪解码下有效消除退化重复,同时保持推理基准性能。
-
Small or Large? Zero-Shot or Finetuned? Guiding Language Model Choice for Specialized Applications in Healthcare
本文通过实证实验指导在医疗专业应用中语言模型的选择,强调微调小语言模型和领域特定预训练的显著优势,使其在特定任务上超越零-shot 大语言模型。