Tag: Long Context
All the articles with the tag "Long Context".
-
Efficient Length-Generalizable Attention via Causal Retrieval for Long-Context Language Modeling
本文提出Grouped Cross Attention (GCA)机制,通过可微分检索和动态上下文选择实现Transformer模型的长度泛化,在16M上下文长度下达到完美passkey检索准确率,同时显著降低计算和内存成本。
-
Longer Context, Deeper Thinking: Uncovering the Role of Long-Context Ability in Reasoning
本文通过实验验证了长上下文能力与推理性能的正相关,提出在监督微调前增强长上下文能力的训练策略,并在数学推理基准上显著提升了模型性能。
-
Core Context Aware Transformers for Long Context Language Modeling
本文提出了一种核心上下文感知注意力机制(CCA-Attention),通过全局感知池化和局部保持模块减少长上下文建模中的冗余信息,在保持性能的同时显著提升计算效率,实验表明在 128K 上下文下实现了 7.9 倍加速和约 45% 内存减少。
-
Mitigate Position Bias in Large Language Models via Scaling a Single Dimension
本文提出通过缩放隐藏状态中的位置通道来缓解长上下文语言模型的位置偏差问题,并在多个模型和任务上验证了其有效性,特别是在“中间丢失”基准测试中显著提升了中间位置信息的利用率。
-
Why do LLMs attend to the first token?
This paper argues that attention sinks in LLMs, particularly at the first token, are a useful mechanism to prevent over-mixing of information in deep Transformers, supported by theoretical insights and empirical evidence from Gemma 7B, LLaMa 3.1 models, and pre-training experiments showing stronger sinks with larger models and longer contexts.