Tag: Few-Shot Learning
All the articles with the tag "Few-Shot Learning".
-
Rethinking Meta-Learning from a Learning Lens
This paper rethinks meta-learning from a 'learning' lens, proposing TRLearner, a plug-and-play method that leverages task relations to calibrate optimization, demonstrating significant performance improvements across regression, classification, drug activity, pose prediction, and OOD generalization tasks.
-
MMRL++: Parameter-Efficient and Interaction-Aware Representation Learning for Vision-Language Models
本文提出MMRL及MMRL++框架,通过共享表示空间和解耦策略增强视觉-语言模型的少样本适配能力,并利用参数高效的SRRA和PRC机制提升泛化性和训练稳定性,在多个数据集上取得最优性能。
-
The dynamic interplay between in-context and in-weight learning in humans and neural networks
本文通过神经网络中上下文学习(ICL)与权重学习(IWL)的动态交互,统一解释了人类学习中的组合性泛化、课程效应及灵活性与保留性权衡,为认知科学双过程理论提供了新视角。
-
HyPerAlign: Hypotheses-driven Personalized Alignment
本文提出HyPerAlign方法,通过假设驱动的少样本学习实现LLM的个性化对齐,提高了模型对个体用户的适应性和安全性,同时减少了对微调的依赖。
-
How do Humans and Language Models Reason About Creativity? A Comparative Analysis
This paper conducts a comparative analysis of creativity evaluation in STEM, revealing that human experts and LLMs prioritize different facets of originality (cleverness vs. remoteness/uncommonness) and are differentially influenced by contextual examples, with LLMs showing higher predictive accuracy but poorer construct validity due to homogenized facet correlations.