Tag: Few-Shot Learning
All the articles with the tag "Few-Shot Learning".
-
Less is More: Enhancing Structured Multi-Agent Reasoning via Quality-Guided Distillation
本文提出了一种质量导向的多代理框架,通过提示诱导、检索增强合成和奖励过滤从少量标注数据中提炼高质量监督信号,提升LLMs在低资源结构化推理任务中的性能。
-
The dynamic interplay between in-context and in-weight learning in humans and neural networks
本文通过神经网络中上下文学习(ICL)与权重学习(IWL)的动态交互,统一解释了人类学习中的组合性泛化、课程效应及灵活性与保留性权衡,为认知科学双过程理论提供了新视角。
-
HyPerAlign: Hypotheses-driven Personalized Alignment
本文提出HyPerAlign方法,通过假设驱动的少样本学习实现LLM的个性化对齐,提高了模型对个体用户的适应性和安全性,同时减少了对微调的依赖。
-
How do Humans and Language Models Reason About Creativity? A Comparative Analysis
This paper conducts a comparative analysis of creativity evaluation in STEM, revealing that human experts and LLMs prioritize different facets of originality (cleverness vs. remoteness/uncommonness) and are differentially influenced by contextual examples, with LLMs showing higher predictive accuracy but poorer construct validity due to homogenized facet correlations.
-
Which Attention Heads Matter for In-Context Learning?
本文通过对12个大型语言模型进行消融研究和训练动态分析,发现函数向量头是驱动少样本上下文学习的主要机制,尤其在大型模型中,并且许多函数向量头在训练过程中从归纳头演变而来,纠正了先前认为归纳头是主要驱动力的观点。