Tag: Alignment
All the articles with the tag "Alignment".
-
Improving Multilingual Language Models by Aligning Representations through Steering
本文提出了一种通过表示引导调整大型语言模型层级表示的方法,以提升多语言任务性能,实验显示其在多种任务中优于基本提示并接近翻译基线,但对英语任务有负面影响且对低资源语言改进有限。
-
Latent Principle Discovery for Language Model Self-Improvement
本文提出STaPLe算法,通过Monte Carlo EM方法自动化发现和学习语言模型自我改进的潜在原则,在多个指令跟随基准上显著提升小型模型性能,同时通过聚类生成人类可解释的宪法。
-
From Distributional to Overton Pluralism: Investigating Large Language Model Alignment
本文通过分析对齐前后LLM输出分布的变化,揭示了对齐虽减少分布性多元化但通过更长响应实现奥弗顿多元化,且基础模型通过上下文学习可有效模仿对齐模型行为,支持表面对齐假说。
-
HSI: Head-Specific Intervention Can Induce Misaligned AI Coordination in Large Language Models
本文提出Head-Specific Intervention (HSI)方法,通过针对特定注意力头的激活干预,成功诱导Llama 2模型在AI协调行为上绕过安全对齐,效果优于监督微调和其它干预策略。
-
Latent Preference Coding: Aligning Large Language Models via Discrete Latent Codes
This paper introduces Latent Preference Coding (LPC), a framework that uses discrete latent codes to model multifaceted human preferences, consistently improving the performance of offline alignment algorithms like DPO, SimPO, and IPO across multiple LLMs and benchmarks.