Skip to content
Go back 2505.00333 arXiv logo

Communication-Efficient Wireless Federated Fine-Tuning for Large-Scale AI Models

Published:  at  04:33 PM
73.51 🤔

本文提出了一种无线联邦LoRA微调框架,通过Sparsified Orthogonal Fine-Tuning (SOFT) 和Two Stage Federated Algorithm (TSFA) 优化参数稀疏化和动态资源分配,提高了通信效率和学习性能。

Federated Learning, Large Language Model, Parameter-Efficient Fine-Tuning, Efficiency, Pre-training, Fine-tuning

Bumjun Kim, Wan Choi

Seoul National University

Generated by grok-3-mini-latest

Background Problem

Transformer-based large language models (LLMs) 在各种任务中取得了显著成功,但在其联邦学习 (FL) 场景下进行微调面临资源限制和通信开销的重大挑战。Low-Rank Adaptation (LoRA) 通过训练紧凑的低秩矩阵来缓解这些问题,但现有方法缺乏系统化的秩选择和高效的稀疏化策略。本文的工作起点是优化无线联邦LoRA微调的学习性能和通信效率,解决了关键问题,包括LoRA秩的选择、避免昂贵矩阵乘法和奇异值分解 (SVD) 的稀疏化方法,以及在延迟约束下动态调整参数的问题,从而平衡模型性能与资源消耗。

Method

Experiment

Further Thoughts

论文中Lyapunov优化用于处理延迟约束,这可能启发其他分布式系统如边缘计算中的资源管理;协方差效应在非IID数据下的分析提示未来可探索数据增强或个性化联邦学习来减轻异质性影响;此外,将该框架与差分隐私结合可能提升FL的安全性,并与其他参数高效微调方法(如Prompt Tuning)整合,以进一步提高泛化能力。



Previous Post
R&B: Domain Regrouping and Data Mixture Balancing for Efficient Foundation Model Training
Next Post
RetroInfer: A Vector-Storage Approach for Scalable Long-Context LLM Inference