Tag: Unsupervised Learning
All the articles with the tag "Unsupervised Learning".
-
Single-shot prediction of parametric partial differential equations
Flexi-VAE introduces a variational autoencoder framework for single-shot forecasting of parametric PDEs, using a neural propagator to achieve efficient, accurate long-horizon predictions with significant speedups over sequential models like AE-LSTM, as validated on Burgers' and advection-diffusion equations.
-
Contaminated Multivariate Time-Series Anomaly Detection with Spatio-Temporal Graph Conditional Diffusion Models
TSAD-C introduces a pioneering unsupervised framework for multivariate time-series anomaly detection on contaminated data, using a Decontaminator with S4-based diffusion, long-range dependency modeling via a time-then-graph approach, and anomaly scoring, achieving state-of-the-art performance across diverse datasets.
-
Test-time Correlation Alignment
本文提出测试时相关性对齐(TCA)范式,通过构建伪源域相关性并应用线性变换对齐测试数据特征,显著提升测试时适应(TTA)性能,同时保持高效性和源域知识。
-
One-shot Entropy Minimization
本文提出一-shot熵最小化(EM)方法,通过仅使用单个无标签数据和10步优化即可显著提升大型语言模型在数学推理任务上的性能,媲美或超越传统强化学习方法。
-
Empirical Evaluation of Progressive Coding for Sparse Autoencoders
本文通过实证评估比较了Matryoshka SAEs和基于字典幂律修剪的方法,以实现SAEs的渐进式编码,提高计算效率、重建保真度和可解释性。