Tag: Transformer
All the articles with the tag "Transformer".
-   
Mixture of Sparse Attention: Content-Based Learnable Sparse Attention via Expert-Choice Routing
本文提出Mixture of Sparse Attention (MoSA)方法,通过专家选择路由实现基于内容的稀疏注意力,显著提高了Transformer模型在相同计算预算下的语言建模性能,并优化了资源使用。
 -   
Compact Recurrent Transformer with Persistent Memory
This paper introduces the Compact Recurrent Transformer (CRT), which combines shallow Transformers with RNNs to efficiently process long sequences using a single persistent memory vector, achieving superior or comparable performance to full-length Transformers and Transformer-XL on language and video tasks with significantly reduced computational cost.
 -   
Adaptive Layer-skipping in Pre-trained LLMs
本文提出FlexiDepth方法,通过插件式路由器和适配器实现预训练LLM的自适应层跳过,提高计算效率同时保持生成性能,并通过实验揭示了token类型对计算需求的影响。
 -   
SpargeAttn: Accurate Sparse Attention Accelerating Any Model Inference
本研究提出 SpargeAttn,一种通用稀疏注意力机制,通过两阶段在线过滤器和量化技术加速各种模型的推理,同时保持端到端性能无损。
 -   
On-Device Qwen2.5: Efficient LLM Inference with Model Compression and Hardware Acceleration
本文提出软件硬件协同优化框架,通过 AWQ 模型压缩和 FPGA 加速在边缘设备上高效部署 Qwen2.5-0.5B 模型,实现 55.1% 的压缩率和 5.1 tokens/s 的推理速度,同时保持较高准确性。