Tag: Test Time
All the articles with the tag "Test Time".
-
Thinking Short and Right Over Thinking Long: Serving LLM Reasoning Efficiently and Accurately
本文提出SART框架,通过冗余采样与早期停止以及两阶段动态修剪方法,显著提升了大型语言模型推理服务的效率(最高28.2倍),同时保持了与基线相近的准确性。
-
Can Past Experience Accelerate LLM Reasoning?
本文提出SpeedupLLM框架,通过自适应计算分配和记忆机制实现LLM推理加速,实验表明计算成本最高可减少56%,尤其在高相似度问题上效果显著。
-
SLOT: Sample-specific Language Model Optimization at Test-time
本文提出SLOT方法,通过测试时对每个输入提示优化一个轻量级样本特定参数向量δ,显著提升大型语言模型在推理任务上的性能,如Qwen2.5-7B在GSM8K上提升8.65%。
-
First Finish Search: Efficient Test-Time Scaling in Large Language Models
本文提出First Finish Search (FFS),一种无需训练的测试时扩展策略,通过并行解码并选择最先完成的推理轨迹,在推理任务上显著提升大型语言模型准确率(如DeepSeek-R1在AIME数据集达82.23%),同时减少高达45%的令牌使用量。
-
Thought calibration: Efficient and confident test-time scaling
本文提出‘思想校准’方法,通过推理树抽象和轻量级探针动态决定语言模型推理终止时机,在分布内数据上减少高达60%的思考token,同时保持性能,并在分布外数据上实现20%的减少。