Tag: Supervised Learning
All the articles with the tag "Supervised Learning".
-
Small Models, Smarter Learning: The Power of Joint Task Training
本文通过ListOps数据集上的小型Transformer模型实验,揭示联合任务训练(如MAX+MED+SUM)显著降低学习难度、减少参数需求,并引导模型发现基于数字属性的高效算法,而非单纯记忆符号表。
-
ASURA-FDPS-ML: Star-by-star Galaxy Simulations Accelerated by Surrogate Modeling for Supernova Feedback
This paper introduces ASURA-FDPS-ML, a framework that accelerates high-resolution galaxy simulations by using a machine learning surrogate model for supernova feedback in dense regions, achieving a fourfold speedup while maintaining comparable morphological and outflow characteristics to direct simulations, despite some discrepancies in momentum at higher altitudes.
-
SLearnLLM: A Self-Learning Framework for Efficient Domain-Specific Adaptation of Large Language Models
SLearnLLM提出了一种自学习框架,通过让大语言模型自我评估并筛选错误回答的QA对进行微调,在农业和医疗领域实现了与全数据集微调相当的性能提升,同时显著降低了训练时间成本。
-
Warm Up Before You Train: Unlocking General Reasoning in Resource-Constrained Settings
本文提出了一种两阶段训练框架,通过领域无关的Knights & Knaves逻辑游戏预热激活通用推理能力,并结合少量目标领域数据的RLVR训练,在资源受限环境下显著提升大型语言模型的推理性能和跨领域泛化能力。
-
Deciphering Trajectory-Aided LLM Reasoning: An Optimization Perspective
本文提出RaML框架,从元学习视角将LLM推理轨迹视为伪梯度更新,通过理论分析和实验验证了推理与优化的关联,并探索了训练策略和轨迹特性对推理能力的提升潜力。