Tag: Supervised Learning
All the articles with the tag "Supervised Learning".
-
LIFT the Veil for the Truth: Principal Weights Emerge after Rank Reduction for Reasoning-Focused Supervised Fine-Tuning
本文提出了一种低秩引导的稀疏微调方法LIFT,通过低秩近似后选择主要权重进行微调,在推理任务上显著优于全参数微调和LoRA等方法,同时保持内存效率。
-
AutoL2S: Auto Long-Short Reasoning for Efficient Large Language Models
本文提出 AutoL2S 框架,通过标注长短推理路径和 <EASY> 标记训练 LLMs,使其根据问题复杂性动态选择推理长度,实验显示推理长度压缩高达57%,性能基本保持。
-
R1-Code-Interpreter: Training LLMs to Reason with Code via Supervised and Reinforcement Learning
本文提出 R1-Code-Interpreter 框架,通过监督微调和强化学习训练大型语言模型动态生成和执行代码,在 144 个推理和规划任务上显著提升准确率,R1-CI-14B 达到 64.1%,接近 GPT-4o+Code Interpreter 的性能。
-
Harnessing Negative Signals: Reinforcement Distillation from Teacher Data for LLM Reasoning
本文提出强化蒸馏(REDI)框架,通过两阶段训练利用正向和负向推理轨迹,显著提升小型语言模型的数学推理性能,Qwen-REDI-1.5B在公开数据上达到1.5B模型的最新水平。
-
Understanding Overadaptation in Supervised Fine-Tuning: The Role of Ensemble Methods
本文通过理论和实验分析,提出模型集成方法通过平衡‘bias-variance’权衡有效缓解监督微调中的过适应问题,提升下游任务性能并减少预训练知识遗忘。