Tag: Self-Supervised Learning
All the articles with the tag "Self-Supervised Learning".
-
Learning to Plan Before Answering: Self-Teaching LLMs to Learn Abstract Plans for Problem Solving
本文提出LEPA自训练算法,通过训练LLM生成预期计划作为抽象元知识来提升问题解决泛化能力,并在多个推理基准上显著优于现有方法。
-
Exploring Effective Distillation of Self-Supervised Speech Models for Automatic Speech Recognition
This paper explores effective distillation of HuBERT for ASR by comparing student model structures, introducing a discriminative loss for improved low-resource performance, and proposing front-end distillation from waveform to Fbank features, achieving 17% parameter reduction and doubled inference speed with minor performance degradation.
-
Contextures: Representations from Contexts
This paper introduces the contexture theory, unifying representation learning across paradigms by targeting top singular functions of a context-induced expectation operator, demonstrating high alignment in neural representations and proposing a task-agnostic metric for context evaluation with strong empirical correlation to performance on various datasets.
-
Style Feature Extraction Using Contrastive Conditioned Variational Autoencoders with Mutual Information Constraints
This paper proposes a novel method combining contrastive learning with conditional variational autoencoders and mutual information constraints to extract style features from unlabeled data, demonstrating effectiveness on simple datasets like MNIST while facing challenges with natural image datasets due to augmentation limitations and qualitative evaluation.