Tag: Retrieval-Augmented Generation
All the articles with the tag "Retrieval-Augmented Generation".
-
ZeroSearch: Incentivize the Search Capability of LLMs without Searching
ZEROSEARCH introduces a reinforcement learning framework that enhances LLMs' search capabilities by simulating search engines with fine-tuned LLMs, achieving performance comparable to or better than real search engines without API costs through a curriculum-based rollout strategy.
-
Less is More: Enhancing Structured Multi-Agent Reasoning via Quality-Guided Distillation
本文提出了一种质量导向的多代理框架,通过提示诱导、检索增强合成和奖励过滤从少量标注数据中提炼高质量监督信号,提升LLMs在低资源结构化推理任务中的性能。
-
Dynamic Parametric Retrieval Augmented Generation for Test-time Knowledge Enhancement
本文提出动态参数化RAG框架DyPRAG,通过训练一个轻量级参数翻译器在测试时动态转换文档为参数知识,显著降低成本、提升泛化能力和缓解RAG幻觉问题。
-
SAGE: A Framework of Precise Retrieval for RAG
本文提出SAGE框架,通过语义分割、基于梯度的块选择和LLM自反馈机制,提高RAG系统的检索精度和问答性能,同时显著降低成本。
-
PennyLang: Pioneering LLM-Based Quantum Code Generation with a Novel PennyLane-Centric Dataset
本文提出 PennyLang 数据集和 RAG/GraphRAG 框架,通过提升 LLM 在 PennyLane 量子代码生成中的准确性和正确性,填补了 AI 辅助量子编程的空白。