Tag: Representation Learning
All the articles with the tag "Representation Learning".
-
Contextures: Representations from Contexts
This paper introduces the contexture theory, unifying representation learning across paradigms by targeting top singular functions of a context-induced expectation operator, demonstrating high alignment in neural representations and proposing a task-agnostic metric for context evaluation with strong empirical correlation to performance on various datasets.
-
Intra-Layer Recurrence in Transformers for Language Modeling
本文提出Intra-Layer Recurrence (ILR)方法,通过在Transformer单次前向传播中选择性循环特定层(尤其是早期层),在不增加参数量的情况下改善语言建模困惑度,但计算成本增加和大规模模型验证不足限制了其实用性。
-
HINT: Hypernetwork Approach to Training Weight Interval Regions in Continual Learning
HINT proposes a continual learning framework using interval arithmetic in embedding space with a hypernetwork to generate target network weights, achieving improved scalability and non-forgetting guarantees over InterContiNet while outperforming several benchmarks, though struggling with complex datasets.
-
Exploring the Role of Diversity in Example Selection for In-Context Learning
本文提出基于多样性的上下文学习(DICL)方法,通过最大边际相关性(MMR)算法重新排序示例以平衡相关性和多样性,在多个数据集和大型语言模型上实现了约70%的下游任务性能提升或维持。
-
Breaking the Modality Barrier: Universal Embedding Learning with Multimodal LLMs
本文提出UniME框架,通过文本判别知识蒸馏和硬负例增强指令微调,利用多模态大语言模型学习通用的多模态嵌入,提高了下游任务的判别性和组合能力。