Tag: Representation Learning
All the articles with the tag "Representation Learning".
-
Understanding the Skill Gap in Recurrent Language Models: The Role of the Gather-and-Aggregate Mechanism
本文通过提出Gather-and-Aggregate (G&A)机制,揭示了Transformer和SSM模型在上下文检索能力上的性能差距主要源于少数关键头部的实现差异,并通过混合模型实验验证了注意力机制在改进SSM检索能力上的潜力。
-
Deformable Beta Splatting
Deformable Beta Splatting (DBS) enhances real-time radiance field rendering by introducing deformable Beta Kernels for superior geometric fidelity, Spherical Beta for efficient color encoding, and kernel-agnostic MCMC optimization, achieving state-of-the-art visual quality with 45% fewer parameters and 1.5x faster rendering than 3DGS-MCMC.
-
Recall with Reasoning: Chain-of-Thought Distillation for Mamba's Long-Context Memory and Extrapolation
This paper proposes Recall with Reasoning (RwR), a method that enhances Mamba's long-context memory and extrapolation by distilling chain-of-thought summarization from a teacher model, achieving significant performance improvements on LONGMEMEVAL and HELMET benchmarks while preserving short-context capabilities.
-
Investigating Task Arithmetic for Zero-Shot Information Retrieval
本文提出任务算术方法,通过参数加减操作实现零样本信息检索的领域和语言适应,在科学、生物医学和多语言数据集上取得最高18%的NDCG@10提升,展现了轻量级模型适应的潜力。
-
Activation Space Interventions Can Be Transferred Between Large Language Models
This paper demonstrates that activation space interventions for AI safety, such as backdoor removal and refusal behavior, can be transferred between large language models using autoencoder mappings, enabling smaller models to align larger ones, though challenges remain in cross-architecture transfers and complex tasks like corrupted capabilities.