Tag: Reinforcement Learning
All the articles with the tag "Reinforcement Learning".
-
Making Small Language Models Efficient Reasoners: Intervention, Supervision, Reinforcement
This paper introduces Temperature Scaling (TS) and Trace Length Control for Dynamic Reasoning (TLDR) to enhance token efficiency in small language models, achieving up to 50% reduction in response length with minimal accuracy loss across multiple reasoning benchmarks.
-
Skywork Open Reasoner 1 Technical Report
Skywork-OR1通过提出MAGIC框架,利用多阶段训练和自适应熵控制的强化学习方法,显著提升了长链式推理模型在数学和编码任务上的性能,并在AIME24和AIME25基准上超越了DeepSeek-R1和Qwen3-32B。
-
Multiple Weaks Win Single Strong: Large Language Models Ensemble Weak Reinforcement Learning Agents into a Supreme One
本文提出LLM-Ens框架,利用大型语言模型(LLMs)通过语义状态分类和动态代理选择增强强化学习模型集成,在Atari基准上显著提升性能,最高较基线方法提升51.2%。
-
Reflect, Retry, Reward: Self-Improving LLMs via Reinforcement Learning
本文提出了一种通过强化学习(GRPO)优化大型语言模型自我反思能力的方法,在函数调用和数学方程任务上显著提升性能(平均9.0%和16.0%),并展示小模型在训练后可超越未训练大模型。
-
General-Reasoner: Advancing LLM Reasoning Across All Domains
本文提出General-Reasoner,通过零强化学习结合跨领域高质量数据集和基于生成模型的验证器,显著提升大型语言模型在多领域推理任务上的性能,同时保持数学推理的有效性。