Tag: Reinforcement Learning
All the articles with the tag "Reinforcement Learning".
-
Thinking Fast and Right: Balancing Accuracy and Reasoning Length with Adaptive Rewards
本文提出自适应直接长度惩罚(A-DLP)方法,通过动态调整强化学习中的长度惩罚系数,在减少大型语言模型推理长度超过 50% 的同时保持准确性,为构建高效推理模型提供了新方向。
-
ZeroSearch: Incentivize the Search Capability of LLMs without Searching
ZEROSEARCH introduces a reinforcement learning framework that enhances LLMs' search capabilities by simulating search engines with fine-tuned LLMs, achieving performance comparable to or better than real search engines without API costs through a curriculum-based rollout strategy.
-
Thinker: Learning to Think Fast and Slow
本文提出Thinker任务,通过将问答过程分解为快速思考、验证、慢速思考和总结四个阶段,利用强化学习针对性训练大型语言模型的直觉和推理能力,在数学推理基准上实现了显著性能提升。
-
S-GRPO: Early Exit via Reinforcement Learning in Reasoning Models
本文提出 S-GRPO 方法,通过串行组生成和递减奖励策略调控大型语言模型中间推理过程,在多个基准数据集上实现推理长度减少 35.4%~61.1% 和准确率提升 0.72%~6.08%,显著提升推理效率。
-
Reinforcement Fine-Tuning Powers Reasoning Capability of Multimodal Large Language Models
本文作为立场论文,主张强化微调(RFT)通过强化学习算法显著提升多模态大语言模型(MLLMs)的推理能力,总结了社区在多模态、任务和领域上的进展,并提出了五个未来研究方向,但缺乏具体方法创新和实验验证。