Tag: Reinforcement Learning
All the articles with the tag "Reinforcement Learning".
-
Video Prediction Policy: A Generalist Robot Policy with Predictive Visual Representations
The Video Prediction Policy (VPP) introduces a novel generalist robot policy that leverages predictive visual representations from fine-tuned video diffusion models to learn implicit inverse dynamics, achieving significant improvements of 41.5% on the Calvin ABC→D benchmark and 31.6% in real-world dexterous manipulation tasks over state-of-the-art baselines.
-
RAGEN: Understanding Self-Evolution in LLM Agents via Multi-Turn Reinforcement Learning
本文提出StarPO框架和RAGEN系统,通过多轮轨迹级别强化学习训练LLM智能体,揭示了训练不稳定性(如Echo Trap)和推理能力不足的挑战,并通过StarPO-S改进稳定性和泛化性,但推理能力仍需细粒度奖励设计支持。
-
EMORL: Ensemble Multi-Objective Reinforcement Learning for Efficient and Flexible LLM Fine-Tuning
本文提出EMORL框架,通过集成学习分别训练单目标模型并在隐藏状态层聚合,结合分层网格搜索优化权重,在咨询反思生成任务中实现了与传统方法相当的性能,同时显著提升了训练效率、可扩展性和解释性。
-
Think2SQL: Reinforce LLM Reasoning Capabilities for Text2SQL
本文通过结合监督微调(SFT)、强化学习(RL)及细粒度奖励函数(如QATCH),显著提升了小型LLM在Text2SQL任务中的推理能力和性能,Think2SQL-7B模型在BIRD数据集上超越了400B+参数模型。
-
SimpleRL-Zoo: Investigating and Taming Zero Reinforcement Learning for Open Base Models in the Wild
This paper investigates zero RL training on diverse open base models, achieving significant accuracy and response length improvements while identifying key factors like reward design and data difficulty that influence the emergence of reasoning behaviors.