Tag: Pre-training
All the articles with the tag "Pre-training".
-
SelfBudgeter: Adaptive Token Allocation for Efficient LLM Reasoning
SelfBudgeter通过自适应令牌预算预测和强化学习优化,在MATH数据集上实现74.47%响应长度压缩,同时保持接近原始准确性,显著提升大型推理模型的效率。
-
MoL for LLMs: Dual-Loss Optimization to Enhance Domain Expertise While Preserving General Capabilities
本文提出MoL框架,通过对领域语料使用CE损失和对通用语料使用KL散度损失的双重优化策略,显著提升大型语言模型的领域专长,同时有效保留通用能力,并在医学领域任务中取得优异表现。
-
Not All Correct Answers Are Equal: Why Your Distillation Source Matters
本文通过从三个顶尖大语言模型中提炼189万推理数据,系统研究了提炼源对学生模型性能的影响,发现AM-Thinking-v1提炼数据在多个推理基准上显著提升学生模型表现,并展现出适应性生成长度特性。
-
Beyond 'Aha!': Toward Systematic Meta-Abilities Alignment in Large Reasoning Models
This paper introduces a systematic approach to enhance large reasoning models by aligning them with deduction, induction, and abduction meta-abilities through a three-stage pipeline of individual training, parameter merging, and domain-specific RL, achieving up to 4% performance gains over instruction-tuned baselines across math, coding, and science benchmarks.
-
Illusion or Algorithm? Investigating Memorization, Emergence, and Symbolic Processing in In-Context Learning
本文通过创新任务设计和Pythia模型训练检查点分析,揭示上下文学习(ICL)在大型语言模型中既非纯记忆也非符号算法,而是依赖统计特性的有限泛化能力,并探讨了其训练动态和内部机制联系。