Tag: Parameter-Efficient Fine-Tuning
All the articles with the tag "Parameter-Efficient Fine-Tuning".
-
Efficient Knowledge Transfer in Multi-Task Learning through Task-Adaptive Low-Rank Representation
本文提出 TA-LoRA 方法,通过任务自适应低秩表示和快速-缓慢权重机制提升多任务学习的知识转移效率,实现对未见任务的优异泛化性能,同时保持高参数效率。
-
LoKI: Low-damage Knowledge Implanting of Large Language Models
本文提出LoKI,一种参数高效微调框架,通过分析Transformer FFN层的知识存储机制和层平衡参数选择策略,在下游任务适应和预训练知识保留之间实现了竞争性平衡。
-
MELoRA: Mini-Ensemble Low-Rank Adapters for Parameter-Efficient Fine-Tuning
本文提出MELoRA,通过并行堆叠多个小型LoRA模块实现更高的等效秩,以更少的参数在自然语言理解和指令跟随任务上显著优于LoRA。
-
Initialization using Update Approximation is a Silver Bullet for Extremely Efficient Low-Rank Fine-Tuning
本文提出LoRA-SB方法,通过基于全参数微调第一步梯度近似的初始化策略优化低秩微调,在参数量减少27-90倍的情况下,显著超越LoRA-XS并接近全参数微调性能。
-
Two Is Better Than One: Rotations Scale LoRAs
本文提出 *RadarGate*,一种基于几何的门控方法,通过旋转和拉伸操作增强 LoRA-MoE 的表达能力,在拟合、泛化和可扩展性方面显著优于现有方法,实验结果在 6 个基准数据集的 21 个任务上得到验证。