Tag: Large Language Model
All the articles with the tag "Large Language Model".
-
Mixture of Sparse Attention: Content-Based Learnable Sparse Attention via Expert-Choice Routing
本文提出Mixture of Sparse Attention (MoSA)方法,通过专家选择路由实现基于内容的稀疏注意力,显著提高了Transformer模型在相同计算预算下的语言建模性能,并优化了资源使用。
-
Beyond Single Concept Vector: Modeling Concept Subspace in LLMs with Gaussian Distribution
This paper introduces Gaussian Concept Subspace (GCS), a framework to model concept representations in LLMs as Gaussian distributions, demonstrating improved robustness, faithfulness, and plausibility over single vector methods, with effective application in emotion steering tasks.
-
How Do Multimodal Large Language Models Handle Complex Multimodal Reasoning? Placing Them in An Extensible Escape Game
This paper introduces MM-Escape, a benchmark using the customizable 3D environment EscapeCraft to evaluate multimodal reasoning in MLLMs through room escape tasks, revealing that while models like GPT-4o achieve high success in simple scenarios, performance drops significantly with increased difficulty, exposing distinct limitations in reasoning and spatial awareness.
-
SIMPLEMIX: Frustratingly Simple Mixing of Off- and On-policy Data in Language Model Preference Learning
This paper introduces SIMPLEMIX, a simple method to mix on- and off-policy data in language model preference optimization, demonstrating that their complementary strengths—on-policy for reasoning tasks and off-policy for open-ended tasks—lead to a 6.03% average improvement over single-source methods on Alpaca Eval 2.0.
-
Extracting and Transferring Abilities For Building Multi-lingual Ability-enhanced Large Language Models
本文提出MAET方法,通过提取语言无关的能力相关权重并跨语言转移,构建多语言能力增强的大型语言模型,在数学和科学任务上以60%的计算资源实现约10%的性能提升,优于多种基线方法。