Tag: Large Language Model
All the articles with the tag "Large Language Model".
-
What do Language Model Probabilities Represent? From Distribution Estimation to Response Prediction
本文通过理论分析区分了语言模型输出概率的三种解释(完成分布、响应分布、事件分布),揭示了现有研究中对这些分布的混淆和误解,并呼吁谨慎解释模型概率以指导LLM的开发和应用。
-
Do LLMs Memorize Recommendation Datasets? A Preliminary Study on MovieLens-1M
本文通过基于提示的方法初步研究了大型语言模型(LLMs)对MovieLens-1M推荐数据集的记忆程度,发现所有测试模型均表现出一定记忆,且记忆程度与推荐性能和模型规模正相关,同时揭示了流行度偏见问题。
-
DialogueReason: Rule-Based RL Sparks Dialogue Reasoning in LLMs
本文提出DialogueReason,一种基于对话的推理模式,通过PPO和规则奖励函数训练大型语言模型,以提升复杂复合问答任务中的推理多样性和连贯性,并在MATH、AIME和GPQA数据集上展现出比单论式推理更强的鲁棒性。
-
Recursive Inference Scaling: A Winning Path to Scalable Inference in Language and Multimodal Systems
This paper introduces Recursive INference Scaling (RINS), a method that recursively applies a model block to exploit language's self-similarity, achieving significant performance gains in language and multimodal tasks under compute-matched conditions while offering inference flexibility through stochastic training and linear adapters.
-
Toward Understanding In-context vs. In-weight Learning
本文通过一个简化的理论模型和多场景实验,揭示了数据分布特性如何驱动上下文学习(ICL)和权重学习(IWL)的出现与竞争,并解释了ICL在训练过程中可能短暂的原因。