Tag: Large Language Model
All the articles with the tag "Large Language Model".
-
Fine-tuning Quantized Neural Networks with Zeroth-order Optimization
本文提出Quantized Zeroth-order Optimization (QZO),通过扰动量化尺度参数并结合方向导数裁剪,在量化神经网络上实现零阶优化微调,将内存使用减少18倍以上,并在LLMs和Stable Diffusion上展示出显著的内存效率和一定的性能提升。
-
Scalable Complexity Control Facilitates Reasoning Ability of LLMs
本文通过调整初始化率和权重衰减系数控制大语言模型复杂性,显著提升推理能力,尤其在数学任务上表现突出,并在扩展律上展现更优性能。
-
Learning Like Humans: Advancing LLM Reasoning Capabilities via Adaptive Difficulty Curriculum Learning and Expert-Guided Self-Reformulation
This paper introduces Adaptive Difficulty Curriculum Learning (ADCL) and Expert-Guided Self-Reformulation (EGSR) to enhance LLM reasoning by dynamically adjusting training curricula and guiding models to reformulate expert solutions, achieving significant performance improvements over standard RL baselines on mathematical reasoning benchmarks.
-
ReMA: Learning to Meta-think for LLMs with Multi-Agent Reinforcement Learning
ReMA通过多智能体强化学习分离元思考和推理过程,提升了大型语言模型在数学推理和LLM-as-a-Judge任务上的性能,尤其在分布外泛化能力上表现出色,但对超参数敏感且多轮设置存在稳定性挑战。
-
本文提出Reasoning CPT方法,通过在持续预训练中加入合成隐藏思维数据,显著提升大型语言模型在跨领域推理、困难问题解决和推理效率方面的表现,特别是在MMLU基准上实现了最高3.3%的整体提升和困难问题上约8%的改进。