Tag: Large Language Model
All the articles with the tag "Large Language Model".
-
Vectors from Larger Language Models Predict Human Reading Time and fMRI Data More Poorly when Dimensionality Expansion is Controlled
本文通过控制维度扩展发现,大型语言模型(LLMs)在预测人类阅读时间和脑成像数据时,随着模型规模增加,训练过程的贡献反而减少,揭示了模型与人类句子处理机制的潜在错位。
-
A Unified Approach to Routing and Cascading for LLMs
本文通过理论分析推导出最优的路由和级联策略,并提出级联路由这一统一框架,在成本预算内显著提升大型语言模型的输出质量,尤其在质量估计准确的场景下性能提升明显。
-
The Unreasonable Effectiveness of Entropy Minimization in LLM Reasoning
本文通过熵最小化提出三种无监督方法(EM-FT, EM-RL, EM-INF),显著提升了大型语言模型在数学、物理和编码推理任务上的表现,无需标注数据且在某些情况下超越了传统监督方法和前沿模型。
-
Analyzing Mitigation Strategies for Catastrophic Forgetting in End-to-End Training of Spoken Language Models
本文研究了口语语言模型(SLM)端到端训练中的灾难性遗忘问题,通过评估模型合并、LoRA缩放因子折扣和经验回放三种策略,发现经验回放最为有效,且结合其他方法可进一步提升性能。
-
Activation Space Interventions Can Be Transferred Between Large Language Models
This paper demonstrates that activation space interventions for AI safety, such as backdoor removal and refusal behavior, can be transferred between large language models using autoencoder mappings, enabling smaller models to align larger ones, though challenges remain in cross-architecture transfers and complex tasks like corrupted capabilities.