Tag: Large Language Model
All the articles with the tag "Large Language Model".
-
RLAE: Reinforcement Learning-Assisted Ensemble for LLMs
RLAE提出了一种通过强化学习动态调整大型语言模型集成权重的框架,将集成过程建模为马尔可夫决策过程,在多个任务上实现最高3.3%的性能提升,并展现出跨任务泛化能力和计算效率。
-
An Extra RMSNorm is All You Need for Fine Tuning to 1.58 Bits
This paper demonstrates that fine-tuning large language models to 1.58-bit ternary weights using extra RMSNorm layers and a gradual quantization schedule achieves superior cross-entropy loss and preserves reasoning performance, enabling deployment on commodity hardware without relying on complex knowledge distillation.
-
Divide-Fuse-Conquer: Eliciting "Aha Moments" in Multi-Scenario Games
本文提出Divide-Fuse-Conquer框架,通过分组训练、参数融合和持续优化提升大型语言模型在多场景游戏中的泛化能力,实验在TextArena的18个游戏中显示Qwen2.5-32B-Align性能接近Claude3.5,但复杂场景表现仍有限。
-
RepCali: High Efficient Fine-tuning Via Representation Calibration in Latent Space for Pre-trained Language Models
本文提出了一种名为RepCali的微调方法,通过在潜在空间中校准预训练语言模型编码器输出,显著提升了25个模型在8个下游任务上的性能,同时仅增加0-0.8%的参数。
-
Fractured Chain-of-Thought Reasoning
本文提出Fractured Sampling方法,通过在推理轨迹数量、解决方案多样性和推理深度三个维度上进行采样优化,显著提升大型语言模型在长链式推理任务中的成本-性能权衡。