Tag: Large Language Model
All the articles with the tag "Large Language Model".
-
MoL for LLMs: Dual-Loss Optimization to Enhance Domain Expertise While Preserving General Capabilities
本文提出MoL框架,通过对领域语料使用CE损失和对通用语料使用KL散度损失的双重优化策略,显著提升大型语言模型的领域专长,同时有效保留通用能力,并在医学领域任务中取得优异表现。
-
Not All Correct Answers Are Equal: Why Your Distillation Source Matters
本文通过从三个顶尖大语言模型中提炼189万推理数据,系统研究了提炼源对学生模型性能的影响,发现AM-Thinking-v1提炼数据在多个推理基准上显著提升学生模型表现,并展现出适应性生成长度特性。
-
Theoretical Insights into Fine-Tuning Attention Mechanism: Generalization and Optimization
This paper introduces a fine-tuning strategy for LLMs that leverages the unequal importance of attention matrices and customized learning rates to enhance efficiency, demonstrating through theoretical analysis and experiments on GLUE benchmarks that fine-tuning only Wq and Wv with higher learning rates for Wv can match or exceed full fine-tuning performance with fewer parameters.
-
R-LoRA: Randomized Multi-Head LoRA for Efficient Multi-Task Learning
R-LoRA通过多头随机化(包括多头Dropout和随机初始化)增强了LoRA在多任务学习中的性能,有效提升了任务特定知识的捕获能力,同时降低了GPU内存使用和训练时间。
-
ALPS: Attention Localization and Pruning Strategy for Efficient Alignment of Large Language Models
本文提出 ALPS 算法,通过基于权重分布的参数对齐分布分数(sPAD)定位任务敏感注意力头并剪枝,仅更新 10% 的注意力参数即在通用、数学和代码任务上实现性能提升,同时展现头部可转移性和知识遗忘缓解效果。