Tag: Large Language Model
All the articles with the tag "Large Language Model".
-
SEAL: Steerable Reasoning Calibration of Large Language Models for Free
SEAL, a training-free method, calibrates the reasoning process of Large Language Models by steering latent representations to reduce redundant thoughts, achieving up to 14.1% accuracy improvement and 50.4% token reduction across diverse benchmarks.
-
Think2SQL: Reinforce LLM Reasoning Capabilities for Text2SQL
本文通过结合监督微调(SFT)、强化学习(RL)及细粒度奖励函数(如QATCH),显著提升了小型LLM在Text2SQL任务中的推理能力和性能,Think2SQL-7B模型在BIRD数据集上超越了400B+参数模型。
-
AI agents may be worth the hype but not the resources (yet): An initial exploration of machine translation quality and costs in three language pairs in the legal and news domains
本文通过实证评估五种机器翻译范式,发现推理增强的大型语言模型(如o1-preview)在人工评估中表现出色,超越传统NMT,而多智能体系统虽具潜力,但因高计算成本和语言对表现不一致而受限。
-
Activated LoRA: Fine-tuned LLMs for Intrinsics
本文提出 Activated LoRA (aLoRA),一种改进的 LoRA 框架,通过仅对激活后 token 适配权重,复用基础模型 KV 缓存,实现高效动态适配,并在多个任务上保持与标准 LoRA 相当的性能,同时显著降低推理成本。
-
LENSLLM: Unveiling Fine-Tuning Dynamics for LLM Selection
LENSLLM introduces a Hessian-based PAC-Bayes framework and NTK-based scaling model for LLM selection, achieving up to 91.1% accuracy and 88.5% computational cost reduction by modeling fine-tuning dynamics across diverse tasks.