Tag: Large Language Model
All the articles with the tag "Large Language Model".
-
Scalable Complexity Control Facilitates Reasoning Ability of LLMs
本文通过调整初始化率和权重衰减系数控制大语言模型复杂性,显著提升推理能力,尤其在数学任务上表现突出,并在扩展律上展现更优性能。
-
Shadow-FT: Tuning Instruct via Base
本文提出Shadow-FT框架,通过调优BASE模型并将权重更新直接移植到INSTRUCT模型,显著提升了大型语言模型在数学、编码和推理任务上的性能,同时不引入额外训练成本。
-
Initialization using Update Approximation is a Silver Bullet for Extremely Efficient Low-Rank Fine-Tuning
本文提出LoRA-SB方法,通过基于全参数微调第一步梯度近似的初始化策略优化低秩微调,在参数量减少27-90倍的情况下,显著超越LoRA-XS并接近全参数微调性能。
-
Mini-batch Coresets for Memory-efficient Language Model Training on Data Mixtures
本文提出 CoLM 方法,通过构建小批量核心集匹配大批量梯度,在内存需求减少 2 倍的情况下,使 LLM 微调性能优于 4 倍批大小的常规训练,同时提升收敛速度。
-
Agent RL Scaling Law: Agent RL with Spontaneous Code Execution for Mathematical Problem Solving
本文通过ZeroTIR框架利用强化学习训练基础大型语言模型自发执行Python代码解决数学问题,揭示了训练步数与代码使用频率、响应长度及任务准确率的正相关规律(Agent RL Scaling Law),并在数学基准上显著优于无工具基线。