Tag: Large Language Model
All the articles with the tag "Large Language Model".
-
From Compression to Expansion: A Layerwise Analysis of In-Context Learning
本文通过统计几何分析揭示了大型语言模型在上下文学习中的层级压缩-扩展现象,早期层压缩任务信息,后期层扩展生成预测,并探讨了模型大小、演示数量和噪声对性能的影响。
-
Parameter-Efficient Fine-Tuning with Column Space Projection
本文提出PiCa,一种基于谱特性的参数高效微调方法,通过将梯度投影到预训练权重的低秩列子空间并结合权重共享,在显著减少参数量的同时实现了优于LoRA和SVFT的性能。
-
R1-Searcher++: Incentivizing the Dynamic Knowledge Acquisition of LLMs via Reinforcement Learning
R1-Searcher++ 通过两阶段训练策略(SFT 和 RL),结合奖励机制和记忆模块,使大型语言模型自适应地平衡内部知识与外部检索,在多跳问答任务中显著提升准确性和检索效率。
-
LIFEBench: Evaluating Length Instruction Following in Large Language Models
本文通过引入LIFEBENCH基准,系统评估了26个大型语言模型在长度指令遵循上的能力,发现其在长长度约束下普遍表现不佳,且远未达到厂商宣称的最大输出长度,揭示了模型在长度感知和长文本生成上的根本局限性。
-
Making Small Language Models Efficient Reasoners: Intervention, Supervision, Reinforcement
This paper introduces Temperature Scaling (TS) and Trace Length Control for Dynamic Reasoning (TLDR) to enhance token efficiency in small language models, achieving up to 50% reduction in response length with minimal accuracy loss across multiple reasoning benchmarks.