Tag: Large Language Model
All the articles with the tag "Large Language Model".
-
Toward Efficient Exploration by Large Language Model Agents
本文通过使用 LLMs 显式实现后验采样 RL 算法,显著提高了 LLMs 代理在自然语言环境中的探索效率,同时保留了经典算法的统计性能优势。
-
Racing Thoughts: Explaining Contextualization Errors in Large Language Models
本文提出‘LLM Race Conditions Hypothesis’解释大型语言模型的上下文化错误,通过机械可解释性技术验证了关键窗口和上下文化顺序对模型性能的影响,并探索了推理时干预措施来缓解问题。
-
HSI: Head-Specific Intervention Can Induce Misaligned AI Coordination in Large Language Models
本文提出Head-Specific Intervention (HSI)方法,通过针对特定注意力头的激活干预,成功诱导Llama 2模型在AI协调行为上绕过安全对齐,效果优于监督微调和其它干预策略。
-
Reward Guidance for Reinforcement Learning Tasks Based on Large Language Models: The LMGT Framework
本文提出了LMGT框架,通过利用大型语言模型的先验知识对强化学习的奖励进行动态调整,有效平衡了探索与利用,显著提高了样本效率并降低了训练成本,并在多种环境、算法以及机器人和推荐系统等复杂场景中验证了其有效性。
-
Rethinking Invariance in In-context Learning
This paper introduces Invariant In-Context Learning (InvICL), a novel ICL method that achieves permutation invariance, information non-leakage, and context interdependence using leave-one-out encoding and parallel implementation, outperforming both invariant and non-invariant baselines in generalization and performance across synthetic and real-world tasks.