Tag: Human-AI Interaction
All the articles with the tag "Human-AI Interaction".
-
RAGEN: Understanding Self-Evolution in LLM Agents via Multi-Turn Reinforcement Learning
本文提出StarPO框架和RAGEN系统,通过多轮轨迹级别强化学习训练LLM智能体,揭示了训练不稳定性(如Echo Trap)和推理能力不足的挑战,并通过StarPO-S改进稳定性和泛化性,但推理能力仍需细粒度奖励设计支持。
-
When Thinking Fails: The Pitfalls of Reasoning for Instruction-Following in LLMs
本文通过对15个大型语言模型在指令遵循任务上的评估,揭示了链式思维(CoT)提示会导致性能下降的现象,并通过约束注意力分析和四种缓解策略(尤其是分类器选择性推理)有效恢复了部分性能。
-
Route to Reason: Adaptive Routing for LLM and Reasoning Strategy Selection
本文提出Route-To-Reason(RTR)框架,通过动态路由机制联合选择最优模型和推理策略,在多个推理任务上实现了更高的准确率和超过60%的token使用量减少,显著优化了性能与成本的权衡。
-
Do Theory of Mind Benchmarks Need Explicit Human-like Reasoning in Language Models?
本文通过RL和SFT训练不同规模LLMs,发现RL在较大模型中促进显式ToM推理但在小模型中导致推理崩溃,而SFT意外取得高性能,揭示当前ToM基准测试可能无需显式人类式推理即可解决。
-
Pre-Act: Multi-Step Planning and Reasoning Improves Acting in LLM Agents
本文提出Pre-Act方法,通过多步骤规划和详细推理提升LLM代理性能,并通过微调小型模型(如Llama 3.1 70B)在Almita数据集上实现比GPT-4高69.5%的行动准确率和28%的目标完成率。