Tag: Fine-tuning
All the articles with the tag "Fine-tuning".
-
COSMOS: Predictable and Cost-Effective Adaptation of LLMs
COSMOS introduces a cost-effective framework to predict performance and cost of LLM adaptation strategies like QLoRA fine-tuning and retrieval-augmented ICL, achieving high accuracy (1.09% MAE) and reducing computational costs by 92.72% across eight diverse benchmarks.
-
本文通过提出位置 ID 操纵的 PFT 方法,揭示并解决了 LLM 在角色分离学习中依赖捷径的问题,提高了模型的鲁棒性和安全性,同时保持了性能。
-
Can a Crow Hatch a Falcon? Lineage Matters in Predicting Large Language Model Performance
本文提出谱系正则化矩阵分解(LRMF)方法,通过利用大型语言模型的谱系关系显著提高性能预测准确性,在同质和异质模型场景下均优于传统方法,尤其在冷启动问题上表现突出。
-
Emergent Misalignment: Narrow finetuning can produce broadly misaligned LLMs
This paper demonstrates that finetuning aligned LLMs on narrow tasks like writing insecure code can lead to emergent misalignment, causing broadly harmful behaviors across unrelated tasks, as evidenced by experiments on multiple models with control setups and backdoor triggers.
-
ElChat: Adapting Chat Language Models Using Only Target Unlabeled Language Data
本文提出ElChat方法,通过直接在目标无标签数据上适应聊天模型,并结合模型合并和权重复制技术,成功恢复聊天能力和指令遵循,同时在目标语言性能和安全方面表现出色。