Tag: Fine-tuning
All the articles with the tag "Fine-tuning".
-   Pre-Act: Multi-Step Planning and Reasoning Improves Acting in LLM Agents本文提出Pre-Act方法,通过多步骤规划和详细推理提升LLM代理性能,并通过微调小型模型(如Llama 3.1 70B)在Almita数据集上实现比GPT-4高69.5%的行动准确率和28%的目标完成率。 
-   Initialization using Update Approximation is a Silver Bullet for Extremely Efficient Low-Rank Fine-Tuning本文提出LoRA-SB方法,通过基于全参数微调第一步梯度近似的初始化策略优化低秩微调,在参数量减少27-90倍的情况下,显著超越LoRA-XS并接近全参数微调性能。 
-   Foundation Models For Seismic Data Processing: An Extensive ReviewThis paper conducts an extensive review of natural image foundation models for seismic data processing, demonstrating that hierarchical models like Swin and ConvNeXt, especially with self-supervised pre-training, outperform non-hierarchical ones in demultiple, interpolation, and denoising tasks, while highlighting the benefits and limitations of natural image pre-training for seismic applications. 
-   FlashThink: An Early Exit Method For Efficient ReasoningFlashThink方法通过验证模型动态判断推理过程是否提前结束,在保持大型语言模型准确率的同时显著减少推理内容长度(平均效率提升约77%),并通过FT²微调进一步优化性能。 
-   Mini-batch Coresets for Memory-efficient Language Model Training on Data Mixtures本文提出 CoLM 方法,通过构建小批量核心集匹配大批量梯度,在内存需求减少 2 倍的情况下,使 LLM 微调性能优于 4 倍批大小的常规训练,同时提升收敛速度。