Tag: Data Augmentation
All the articles with the tag "Data Augmentation".
-
Cyber Security Data Science: Machine Learning Methods and their Performance on Imbalanced Datasets
This paper systematically evaluates machine learning classifiers and imbalance learning techniques on two cybersecurity datasets, revealing that XGB and RF perform robustly, while sampling and ensembling effects vary, emphasizing the need for dataset-specific method selection.
-
Deep Learning for On-Street Parking Violation Prediction
This paper develops a Deep Learning model with a novel data smoothing technique to predict fine-grained on-street parking violation rates in Thessaloniki, Greece, using indirect features like weather and time, achieving improved accuracy (MAE of 0.146) over baseline methods.
-
100 Days After DeepSeek-R1: A Survey on Replication Studies and More Directions for Reasoning Language Models
本文综述了DeepSeek-R1发布后100天内推理语言模型的复制研究,系统总结了监督微调和基于可验证奖励的强化学习方法在数据构建和算法设计上的进展,并探讨了推理能力提升的多方向应用。
-
Data Whisperer: Efficient Data Selection for Task-Specific LLM Fine-Tuning via Few-Shot In-Context Learning
Data Whisperer 提出了一种高效、无需训练的基于注意力机制的数据选择方法,通过少样本上下文学习为任务特定的大型语言模型微调选择最优数据子集,在小数据场景下显著提升性能并大幅降低计算成本。
-
Toward Understanding In-context vs. In-weight Learning
本文通过一个简化的理论模型和多场景实验,揭示了数据分布特性如何驱动上下文学习(ICL)和权重学习(IWL)的出现与竞争,并解释了ICL在训练过程中可能短暂的原因。