Tag: AI for Science
All the articles with the tag "AI for Science".
-
Nonparametric learning of covariate-based Markov jump processes using RKHS techniques
本文提出了一种基于再生核希尔伯特空间(RKHS)的非参数化方法,通过频率学和贝叶斯框架建模连续时间马尔可夫链(CTMC)中协变量驱动的非线性转移率,显著提升了个体化状态转移预测的准确性。
-
Quantum-Enhanced LLM Efficient Fine Tuning
本文提出量子张量混合适配(QTHA)方法,通过整合量子神经网络和张量网络,实现LLM的参数高效微调,显著减少参数量并提升性能,为量子增强人工智能奠定基础。
-
Hierarchical Attention Generates Better Proofs
本文提出层次注意力正则化方法,通过引导大型语言模型的注意力机制与数学推理的五级层次结构对齐,在 miniF2F 和 ProofNet 基准上分别提升证明成功率 2.05% 和 1.69%,并显著降低证明复杂度。