Posts
All the articles I've posted.
-
Reinforced MLLM: A Survey on RL-Based Reasoning in Multimodal Large Language Models
本文系统综述了基于强化学习的推理方法在多模态大语言模型(MLLMs)中的进展,分析了算法设计、奖励机制及应用,揭示了跨模态推理和奖励稀疏性等挑战,并提出了分层奖励和交互式RL等未来方向。
-
Layered Unlearning for Adversarial Relearning
本文提出分层遗忘(Layered Unlearning, LU)方法,通过多阶段逐步遗忘数据子集并诱导不同抑制机制,增强大型语言模型对对抗性重新学习的鲁棒性,尽管对语料库攻击仍显脆弱。
-
MOOSComp: Improving Lightweight Long-Context Compressor via Mitigating Over-Smoothing and Incorporating Outlier Scores
本文提出MOOSComp方法,通过在训练中添加inter-class cosine similarity loss缓解over-smoothing问题,并在压缩中整合outlier分数保留关键token,显著提升了任务无关的长上下文压缩性能和泛化能力。
-
Less is More: Enhancing Structured Multi-Agent Reasoning via Quality-Guided Distillation
本文提出了一种质量导向的多代理框架,通过提示诱导、检索增强合成和奖励过滤从少量标注数据中提炼高质量监督信号,提升LLMs在低资源结构化推理任务中的性能。
-
Latte: Transfering LLMs` Latent-level Knowledge for Few-shot Tabular Learning
The paper introduces 'Latte', a framework that transfers latent-level knowledge from Large Language Models during training to enhance few-shot tabular learning, outperforming baselines by leveraging unlabeled data and mitigating overfitting across diverse classification and regression tasks.