Posts
All the articles I've posted.
-
The Unreasonable Effectiveness of Entropy Minimization in LLM Reasoning
本文通过熵最小化提出三种无监督方法(EM-FT, EM-RL, EM-INF),显著提升了大型语言模型在数学、物理和编码推理任务上的表现,无需标注数据且在某些情况下超越了传统监督方法和前沿模型。
-
Analyzing Mitigation Strategies for Catastrophic Forgetting in End-to-End Training of Spoken Language Models
本文研究了口语语言模型(SLM)端到端训练中的灾难性遗忘问题,通过评估模型合并、LoRA缩放因子折扣和经验回放三种策略,发现经验回放最为有效,且结合其他方法可进一步提升性能。
-
Activation Space Interventions Can Be Transferred Between Large Language Models
This paper demonstrates that activation space interventions for AI safety, such as backdoor removal and refusal behavior, can be transferred between large language models using autoencoder mappings, enabling smaller models to align larger ones, though challenges remain in cross-architecture transfers and complex tasks like corrupted capabilities.
-
100 Days After DeepSeek-R1: A Survey on Replication Studies and More Directions for Reasoning Language Models
本文综述了DeepSeek-R1发布后100天内推理语言模型的复制研究,系统总结了监督微调和基于可验证奖励的强化学习方法在数据构建和算法设计上的进展,并探讨了推理能力提升的多方向应用。
-
Revisiting Overthinking in Long Chain-of-Thought from the Perspective of Self-Doubt
本文从自我怀疑视角量化分析长链式思维中的过度思考问题,并提出一种简单提示方法,通过评估输入有效性减少令牌消耗和自我怀疑,在数学推理任务中显著提升效率并维持准确率。