Posts
All the articles I've posted.
-
AdaReasoner: Adaptive Reasoning Enables More Flexible Thinking
AdaReasoner通过强化学习框架自适应调整大型语言模型的推理配置(生成温度、推理步骤数和指令格式),在多样化任务上显著优于固定配置的基线方法,展现了快速收敛和分布外鲁棒性。
-
MoL for LLMs: Dual-Loss Optimization to Enhance Domain Expertise While Preserving General Capabilities
本文提出MoL框架,通过对领域语料使用CE损失和对通用语料使用KL散度损失的双重优化策略,显著提升大型语言模型的领域专长,同时有效保留通用能力,并在医学领域任务中取得优异表现。
-
ATLAS: Learning to Optimally Memorize the Context at Test Time
本文提出Atlas,一种高容量长期内存模块,通过滑动窗口Omega规则和Muon优化器优化上下文记忆,在语言建模和长上下文理解任务中显著优于Transformer和现代RNN。
-
Not All Correct Answers Are Equal: Why Your Distillation Source Matters
本文通过从三个顶尖大语言模型中提炼189万推理数据,系统研究了提炼源对学生模型性能的影响,发现AM-Thinking-v1提炼数据在多个推理基准上显著提升学生模型表现,并展现出适应性生成长度特性。
-
Theoretical Insights into Fine-Tuning Attention Mechanism: Generalization and Optimization
This paper introduces a fine-tuning strategy for LLMs that leverages the unequal importance of attention matrices and customized learning rates to enhance efficiency, demonstrating through theoretical analysis and experiments on GLUE benchmarks that fine-tuning only Wq and Wv with higher learning rates for Wv can match or exceed full fine-tuning performance with fewer parameters.