Posts
All the articles I've posted.
-
Improving the Language Understanding Capabilities of Large Language Models Using Reinforcement Learning
本文通过将自然语言理解任务转化为强化学习问题,使用PPO算法微调中小规模LLMs,在GLUE和SuperGLUE基准上显著提升性能,超越监督微调和BERT-large,并展现出优于GPT-4o的零样本泛化能力。
-
Can Pruning Improve Reasoning? Revisiting Long-CoT Compression with Capability in Mind for Better Reasoning
本文提出Prune-on-Logic框架,通过将长链思维(Long-CoT)转化为逻辑图并选择性剪枝低效验证步骤,在提升小型语言模型(SLMs)推理准确率的同时降低推理成本,揭示了剪枝作为能力对齐策略的潜力。
-
SelfBudgeter: Adaptive Token Allocation for Efficient LLM Reasoning
SelfBudgeter通过自适应令牌预算预测和强化学习优化,在MATH数据集上实现74.47%响应长度压缩,同时保持接近原始准确性,显著提升大型推理模型的效率。
-
Deformable Beta Splatting
Deformable Beta Splatting (DBS) enhances real-time radiance field rendering by introducing deformable Beta Kernels for superior geometric fidelity, Spherical Beta for efficient color encoding, and kernel-agnostic MCMC optimization, achieving state-of-the-art visual quality with 45% fewer parameters and 1.5x faster rendering than 3DGS-MCMC.
-
UnifyFL: Enabling Decentralized Cross-Silo Federated Learning
UnifyFL proposes a decentralized cross-silo federated learning framework using Ethereum blockchain and IPFS to enable trust-based collaboration among organizations, achieving comparable accuracy to centralized FL with flexible aggregation policies and efficient handling of stragglers through synchronous and asynchronous modes.