Posts
All the articles I've posted.
-
R1-Searcher++: Incentivizing the Dynamic Knowledge Acquisition of LLMs via Reinforcement Learning
R1-Searcher++ 通过两阶段训练策略(SFT 和 RL),结合奖励机制和记忆模块,使大型语言模型自适应地平衡内部知识与外部检索,在多跳问答任务中显著提升准确性和检索效率。
-
LIFEBench: Evaluating Length Instruction Following in Large Language Models
本文通过引入LIFEBENCH基准,系统评估了26个大型语言模型在长度指令遵循上的能力,发现其在长长度约束下普遍表现不佳,且远未达到厂商宣称的最大输出长度,揭示了模型在长度感知和长文本生成上的根本局限性。
-
Making Small Language Models Efficient Reasoners: Intervention, Supervision, Reinforcement
This paper introduces Temperature Scaling (TS) and Trace Length Control for Dynamic Reasoning (TLDR) to enhance token efficiency in small language models, achieving up to 50% reduction in response length with minimal accuracy loss across multiple reasoning benchmarks.
-
Skywork Open Reasoner 1 Technical Report
Skywork-OR1通过提出MAGIC框架,利用多阶段训练和自适应熵控制的强化学习方法,显著提升了长链式推理模型在数学和编码任务上的性能,并在AIME24和AIME25基准上超越了DeepSeek-R1和Qwen3-32B。
-
Llama See, Llama Do: A Mechanistic Perspective on Contextual Entrainment and Distraction in LLMs
本文提出上下文牵引(Contextual Entrainment)现象,揭示语言模型对提示中出现token的机制性偏好,并通过可微分掩码方法识别牵引头(entrainment heads),为理解和缓解分心问题提供了新视角。