Skip to content
Go back 2504.21463 arXiv logo

RWKV-X: A Linear Complexity Hybrid Language Model

Published:  at  04:32 PM
87.80 👍

本文提出RWKV-X,一种线性复杂度的混合语言模型,通过结合RWKV和稀疏注意力机制,提升长上下文建模能力,同时保持高效性和短上下文性能。

Large Language Model, Long Context, Efficiency, Pre-training, Multimodality

Haowen Hou, Zhiyi Huang, Kaifeng Tan, Rongchang Lu, Fei Richard Yu

Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Information Science and Engineering, Hohai University, College of Computer Science and Software Engineering, Shenzhen University, School of Ecological and Environmental Engineering, Qinghai University

Generated by grok-3-mini-latest

Background Problem

传统Transformer模型依赖自注意力机制,具有二次方复杂度,这在处理长序列输入时会带来显著限制。尽管线性替代模型如RWKV等在效率上有所提升,但它们在长上下文理解方面仍存在挑战,例如在长序列基准测试中性能急剧下降。本工作旨在解决这一问题,提出一个线性复杂度的混合模型,以高效捕获短距离和长距离依赖,同时避免现有混合模型的二次方复杂度瓶颈。

Method

Experiment

Further Thoughts

RWKV-X的混合架构启发我们探索更多领域,如多模态模型中结合稀疏机制处理长序列数据,可能提高视频或音频处理的效率;KV缓存管理策略可扩展到实时应用中,优化边缘设备上的内存使用;此外,与Mamba或Jamba等模型比较,RWKV-X的线性复杂度可能在数据稀缺场景下更具优势,未来可研究其在联邦学习中的应用,以保护隐私的同时提升模型泛化。



Previous Post
Improving Reasoning Performance in Large Language Models via Representation Engineering
Next Post
Mem0: Building Production-Ready AI Agents with Scalable Long-Term Memory